Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 11(11)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34828061

RESUMEN

Bacterial contamination of semen is an important factor connected to the health status of bulls that may significantly affect semen quality for artificial insemination. Moreover, some important bovine diseases may be transmitted through semen. Up to now, only a very limited number of complex studies describing the semen microbiome of bulls have been published, as many bacteria are hard to cultivate using traditional techniques. The 16S rRNA high-throughput sequencing strategy allows for the reliable identification of bacterial profiles of bovine semen together with the detection of noncultivable bacterial species. Fresh samples from Holstein Friesian breeding bulls (n = 55) were examined for the natural variability in the present bacteria. Semen doses were selected randomly from Slovak Biological Services in Nitra, Slovak Republic. The most predominant phyla within the whole dataset were Firmicutes (31%), Proteobacteria (22%), Fusobacteria (18%), Actinobacteria (13%) and Bacteroidetes (12%). Samples of semen were divided into two separate clusters according to their microbiome compositions using a cording partition around a medoids analysis. Microbiomes of the first cluster (CL1) of samples (n = 20) were based on Actinobacteria (CL1 average = 25%; CL = 28%) and Firmicutes (CL1 = 38%; CL2 = 27%), while the second cluster (CL2; n = 35) contained samples characterized by a high prevalence of Fusobacteria (CL1 = 4%; CL2 = 26%). Some important indicator microbial groups were differentially distributed between the clusters.

2.
Plants (Basel) ; 9(2)2020 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-32085509

RESUMEN

Endophytic bacteria are an important part of different functions in plants that lead to plants' production characteristics as well as their stress response mechanisms. Endophytic bacterial diversity was analyzed in this study to describe 16S rRNA variability and changes in the leaves of drought-tolerant and drought-susceptible wheat when growth under in vitro conditions. A metagenomic analysis was applied and a pilot exploratory study was performed to prove this type of analysis as applicable to tracking endophytic bacterial diversity changes when a drought stress is applied to an in vitro culture of wheat. The study showed that the changes in the bacterial endophytes' variabilities associated preferentially with the drought stress varietal characteristics of the analyzed wheat instead of the applied stress conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...